High Trap Stiffness Microcylinders for Nanophotonic Trapping
نویسندگان
چکیده
منابع مشابه
Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
The advent of nanophotonic evanescent field trapping and transport platforms has permitted increasingly complex single molecule and single cell studies on-chip. Here, we present the next generation of nanophotonic Standing Wave Array Traps (nSWATs) representing a streamlined CMOS fabrication process and compact biocompatible design. These devices utilize silicon nitride (Si3N4) waveguides, oper...
متن کاملNanophotonic light-trapping theory for solar cells
Conventional light-trapping theory, based on a ray-optics approach, was developed for standard thick photovoltaic cells. The classical theory established an upper limit for possible absorption enhancement in this context and provided a design strategy for reaching this limit. This theory has become the foundation for light management in bulk silicon PV cells, and has had enormous influence on t...
متن کاملNanophotonic light trapping in solar cells
Related Articles Nanophotonic light trapping in solar cells App. Phys. Rev. 2012, 11 (2012) Minimizing reflection losses from metallic electrodes and enhancing photovoltaic performance using the Simicrograting solar cell with vertical sidewall electrodes Appl. Phys. Lett. 101, 103902 (2012) Comparison of periodic light-trapping structures in thin crystalline silicon solar cells J. Appl. Phys. 1...
متن کاملAdaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth
In optical trapping systems the trap stiffness, or spring constant, deteriorates dramatically with trap depth due to optical aberrations and system misalignment. This can severely hamper studies that employ optical tweezers to make accurate quantitative measurements. Here, a deformable membrane mirror is used, in conjunction with a random search algorithm, to correct for these aberrations by op...
متن کاملNanophotonic Trapping for Precise Manipulation of Biomolecular Arrays
Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Applied Materials & Interfaces
سال: 2019
ISSN: 1944-8244,1944-8252
DOI: 10.1021/acsami.9b10041